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Thirty years ago, Hoult et al. reported for the first time that phosphorus metabolites could be observed in
vivo using 31P Magnetic Resonance Spectroscopy (MRS) opening promising opportunities of understanding
muscle energetics in vivo under strictly non invasive conditions [1]. From that time, MRS technology has
rapidly evolved with the development of RF-surface coils in 1980 [2], the availability of high field and wide-
bore superconducting magnets and methodological developments (dedicated pulse sequences, spatial
localization of NMR signal…). So far, a large number of publications has been devoted to the investigation of
muscle energetics in a variety of conditions ranging from diseases [3-5] to training regimens [6-8].
Considering the investigation of muscle diseases using 31P MRS, the topic can be approached in different
ways. The classical way is to list the number of pathologies investigated so far and to present the
corresponding metabolic anomalies. From our point of view, this way suffers from the lack of a critical
approach. In that respect, we have chosen in this syllabus to start with an overview of the possibilities
offered by the technique (paragraphs I and II). Paragraph III is devoted to a presentation of muscle
energetics and the corresponding changes occurring in exercising muscle as seen using 31P MRS are
presented in paragraph IV.  The reader should then have acquired sufficient knowledge to properly
understand the final paragraph devoted to the metabolic abnormalities reported in a variety of muscle
diseases.

I. Informational content of a 31P MR spectrum

Measurement of phosphorylated compounds concentrations in living cells is not easy. Traditional methods
such as percutaneous needle biopsy and freeze clamping exhibit limitations especially related to possible
partial degradation of phosphorylated metabolites during extraction. In addition, repeated measurements
cannot be performed on the same muscle, making impossible the achievement of high-time resolution
kinetics. Compared to analytical methods, 31P MRS offers the opportunity of measuring non-invasively and
continuously with a high time-resolution, the concentration of phosphorylated compounds involved in
muscle energetics. Interestingly, direct biochemical and 31P MRS measurements give comparable results [9-
11].
A typical 31P MR spectrum exhibits six to seven peaks corresponding to phosphocreatine (PCr), inorganic
phosphate (Pi), the three phosphate groups of ATP (in position α, β  et γ) and phosphomonoesters (PME)

(figure 1). The Pα signal of ATP displays occasionally an upfield shoulder corresponding to NAD+/NADH.
In between the PCr and Pi signals, the phosphodiester signal can be observed. This signal is usually assigned
to glycerophosphorylcholine and glycerophosphoryethanolamine which can be detected as a small peak in
normal muscle spectra (mainly from lower limb) and as a larger peak in patients with muscle dystrophy [12]
illustrating membrane breakdown. Given the low sensitivity of the MR technique, the free metabolically
active ADP concentration, which is only a tiny fraction of its total intracellular concentration, cannot be
measured. It can however be calculated using the creatine kinase equilibrium where the total creatine
content is taken as either 42.5 mM or considering that phosphocreatine represents 85% of the total creatine
content [13]. Alternatively, [ADP] can be calculated by adjusting the CK equilibrium constant to the ionic
conditions of the cell in order to avoid the errors that can arise at low pH and taking into account all the ionic
species involved in the reaction catalyzed by the creatine kinase [13,14]. Similarly, AMP concentration can be
calculated using the adenylate kinase equilibrium [13]. In the absence of biochemical data, ATP is often
assumed to be normal and is used as the equivalent of an internal standard in order to calculate the
concentrations of other metabolites.
Apart from the dynamic measurements of high-energy phosphate compounds, 31P MRS offers the only non
invasive way of assessing intracellular pH. Indeed, under conditions of physiological pH (one of the pKa of
Pi is 6.75) two forms of Pi coexist (H2PO4- and HP042-). These two forms are exchanging so fast that only a
single Pi signal is detected and the chemical shift (signal position on the horizontal axis) of this signal is a
weighted average of both forms. Due to this sensitivity of the Pi chemical shift to pH, it is possible, with
appropriate calibration curves, to measure muscle pH non invasively.
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The quantitative measurements of high-energy phosphate compounds and pH allow to compute a number
of derived metabolic variables such as, for instance, the oxidative phosphorylation potential and the free
energy of ATP hydrolysis in vivo. Also, magnesium concentration can be calculated from the chemical shift
of the ATP beta group [15-17].

Fat, fibrous tissue blood and extracellular fluid contribute no significant signal and mitochondrial
metabolites are too tightly bound to interfere.

Figure 1
Typical series of 31P
MR spectra recorded
in humans forearm
flexor.
MR spectra have been
recorded at 4.7T
( B i o s p e c  4 7 / 3 0
Bruker) during a
standardized rest-
exercise-recovery
protocol with a time
resolution of 15s. On
the higher panel of
t h e  f i g u r e ,  i s
represented a single
spectrum with the
corresponding
assignments.  Ref:
reference compound
(phenyl phosphonic
acid), PME (phosphomonoesters), Pi (inorganic phosphate), PDE (phosphodiesters), PCr (phosphocreatine),
phosphate groups of ATP in position α, β and γ.

II. Technical considerations

The requirement for magnetic field homogeneity generally dictates that the muscle examined be positioned
at magnet center and remain in a fixed position during data collection. In that respect, dedicated ergometers
have been designed in each laboratory in order to investigate exercising muscles within superconducting
magnets. So far, adductor pollicis [18], forearm and wrist flexor muscles [5,19,20], calf [21,22]and thigh
muscles [23-26] have been investigated using 31P MRS. MRS recordings have been sometimes coupled to
other non invasive techniques such as electromyography [27,28]and gas exchange measurements [24]. Given
the low magnetic resonance sensitivity of 31P (6% of proton) and the low tissue concentrations of some of the
relevant metabolites, MR signals are time-averaged over a period ranging from a few seconds to several
minutes depending on the required signal to noise ratio and the desired time resolution. In addition, MR
signal is detected with a surface coil over a relatively large muscle volume proportional to the surface coil
radius making this signal a weighted average of the muscle fibers existing within the sampling volume. This
has to be taken as a comparative item with histological and biochemical analyses which are often carried out
on very small samples of tissues which may not give a representative picture of the biochemical state of the
muscle. However, care has to be taken not to turn this advantage into a drawback while sampling exercising
and non exercising muscles at the same time. This can be achieved when MRS is combined to MRI  for i)
proper localisation of the coil and ii) proper determination of the sensitive volume of the coil.
Yet only a small number of centers around the world utilize MRS routinely for investigations of metabolic
changes surrounding muscle contraction. The labor intensive nature of this type of study and the necessity
to combine efforts of scientists from different areas (biochemistry, physiology, physics, medicine) may be
important in this regard in addition to the cost of the equipment. Studies involving hundreds of subjects
have been rarely reported but in that respect MRS does not differ than other techniques. In terms of time, a
typical rest-exercise recovery protocol almost requires an hour and several additional hours are necessary
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for data processing. Initially manual, data processing has become automatic quite rapidly and recent
analytical procedures performed on raw MR signals (time domain) rather on MR spectra (frequency
domain) and incorporating prior knowledge have significantly improved the automatic analysis [29].

III. ATP homeostasis and ATP sources

One of the main contributions of 31P MRS to muscle physiology is its ability to measure sequentially the
variations of concentrations in PME, Pi, PCr, ATP as well as intracellular pH during muscle contraction and
recovery. Biochemical reactions taking place in the myocyte are then directly reflected by specific
perturbations on the spectrum (figure). Muscle energy production results in PCr and pH changes which in
turn would modify ADP and Pi concentrations both of which ultimately stimulate ATP production. During
contraction, the free energy stored in ATP (the ubiquitous substrate for energy production) is converted into
mechanical energy via the interaction of two muscle proteins, actin and myosin. Muscle work is linked to
hydrolysis of ATP. However, As illustrated in the figure, in normal subjects, the intracellular concentration
of ATP remains unchanged during moderate exercise indicating an adequate balance between energy
demand and supply [30]. A net ATP decrease has been only reported when exercise intensity was by far
larger [31] and interestingly such a net ATP consumption has rarely been reported in patients with metabolic
disorders [32-34]. The balance between ATP demand and ATP supply is ensured by the three main sources
of ATP within the muscle and each of them can be accurately quantified from the PCr and pH time-
dependent changes in exercising muscle and throughout the recovery period.

III.A. PCr changes in exercising muscle

PCr is largely recognized as an intracellular buffer (some authors have also reported PCr as an energy
shuttle between production and consumption sites) allowing to compensate for any shortfall in either non
oxidative or oxidative ATP production. Across the rest to work transition, [ATP] in working muscle is
maintained by phosphocreatine breakdown in a reaction catalysed by creatine kinase. After a few seconds (if
not immediately) both glycolysis and oxidative phosphorylation are activated [35,36]. The time-dependent
changes in PCr has been described as either mono or biexponential likely in relation to exercise intensity
[37]. From these changes, the involvement of PCr breakdown in energy production can be easily calculated
as a decreasing contribution. In addition, considering PCr as the major energy source at the onset of exercise
[38], the initial rate of PCr consumption can be calculated and it can be used to infer the energy cost of
contraction when power output (W) is taken into account.

III.B. pH changes in exercising muscle, buffering components and glycolytic ATP
production

On initiation of muscle contraction or at times when the workload or rate is increased, glycogen breakdown
is rapidly activated to provide substrate for glycolysis. Pyruvate that is not used as a substrate by the
mitochondria accumulates and the combined production of lactate and ATP hydrolysis lowers pH [39,40].
The extent of the change in pH is a balance among lactic acid production proton efflux, ATP hydrolysis and
the pH raising effect of PCr breakdown. Interestingly, all these components could be quantitatively analysed
using 31P MRS.
With a high enough time-resolution such that an initial alkalosis (dpH/dt) can be measured at the onset of
exercise, muscle buffering capacity can be calculated as the ratio of the expected pH changes (due to PCr
breakdown) and the measured pH change. This composite buffering capacity includes bicarbonate and non
bicarbonate compounds The contribution (βx) of inorganic phosphate (Pi) and sugar-phosphate (PME) to this
composite buffering capacity can be determined using the standard formula of a buffer dissociation [41].
Exercising muscle is usually assumed as a "closed" system [41-43] and buffer capacity due to bicarbonate is
set to zero.
These values are used for the determination of the glycolytic rate of ATP production which can be calculated
differently according to the type of exercise. Under ischemic conditions, given that ATP supply is mainly
supported by PCr breakdown and glycolytic ATP production, the glycogenolytic flux can be simply
calculated as the difference between the total rate of ATP turnover and the rate of ATP production from Pcr
breakdown at any time of exercise. When ATP demand is supported by both non oxidative and aerobic
sources (mixed exercise), the calculation of the glycolytic rate takes into account each component of the H+
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balance, i.e., overall H+ production associated with nonoxidative ATP production, H+ efflux, and H+ uptake
associated with PCr breakdown [33,44].
As described in [41], the rate of H+ efflux cannot be directly estimated during exercise but has to be analysed
from the coupled analysis of pH changes (usually an additional acidosis) and PCr resynthesis during the
initial part of the recovery period following exercise. Indeed, during the post-exercise recovery period, pH
recovers back towards its resting value despite a continuous proton load from PCr resynthesis :

III.C. PME changes in exercising muscle, glycogenolytic and glycolytic ATP
productions

The PME signal in 31P MR spectra comes from hexose phosphates i.e. glycolytic intermediates such as
glucose 6-phosphate (G6-P) and fructose 6-phosphate (F6-P). Alternatively IMP and AMP could contribute
to the PME signal but only when ATP homeostasis is compromised and a net ATP degradation is measured.
An accumulation of PME occurs normally during exercise likely as an imbalance between glycogenolytic
and glycolytic fluxes [13,45]. Indeed, glycogenolytic flux often exceeds glycolysis flux [46] and
glycogenolysis supplies glycolysis with most of its substrate G6-P. Glycogenolyis flux could then be
quantified from the accumulation of PME and taking into account the glycolytic flux [13,47].
The analysis of PME accumulation during exercise has delineated whether glycolysis is activated or not as a
mass-action response to glycogenolysis. Actually, PME accumulation occurs before the significant activation
of glycolysis [13,48] indicating that the glycogenolysis production of PME is not sufficient to trigger
glycolysis flux and that the two pathways differ in their sensitivities to the signals that control flux i.e.
metabolites such as Pi and ADP and calcium. Instead, the glycolytic pathway is controlled at one or more
sites downstream of glycogenolysis [49].
Pathological changes in PME encompass lower and higher accumulation of PME occurring in proximal and
distal glycogenoses respectively [30,50]. In the former situation, PME does not accumulate as a result of
impaired glycogenolysis whereas in the latter situation a reduced PFK activity (or another enzyme
downstream of the glycolytic pathway) enlarges the already existing imbalance between glycogenolysis and
glycolysis and accounts for the larger accumulation of PME. Together with these abnormal changes,
exercise-induced acidosis is either limited [50] or does not exist [30] again as a result of the reduced activities
of either glycogenolysis and/or glycolysis [30,50].

III.D. PCr and pH changes in  muscle after exercise, aerobic ATP production

During the post-exercise period, PCr and pH both recover back to their respective value with a lag time for
pH. As previously underlined, this lag time accounts for the proton load from PCr resynthesis and this can
be used in order to calculate proton efflux [51] which is modulated by blood flow and activities of various
transporters. The PCr recovery kinetics provides information regarding oxidative ATP production. Indeed, it
has been clearly demonstrated that PCr resynthesis in recovery is purely aerobic [52,53], one of the
illustrations being the absence of PCr resynthesis during the post-stimulation ischemic period whereas all
the potential controllers of glycolysis i.e. Pi and ADP were by far larger than their respective Km [53]. In
addition, the rate of PCr recovery is slowed down in mitochondrial disorders [54-56] and cardiac failure
[57,58] as a result of impaired mitochondrial respiration, improved in athletes [7,59-61] consistent with an
increased mitochondria content and/or activities of enzymes involved aerobic ATP production. Also, it has
been shown that PCr recovery kinetics can be accelerated with increased oxygen supply [62,63] (at least in
exercise-trained subjects) and following anti-asthenic treatment [56]. The independence of recovery data
with respect to stimulation frequency and exercise intensity [52,64] is also of importance for the utilisation of
recovery data as indices of aerobic capacity. Comparative analyses of in vivo MR data and in vitro
measurements of mitochondrial enzymes activities have shown good agreements [65-67]. Overall, PCr
recovery data are considered as robust measures of mitochondrial function as long as the dependence with
end-of-exercise parameters such as intracellular acidosis is properly taken into account [19,60,68]. The PCr
recovery kinetics is usually considered as a monoexponential function with PCr increasing from the end-of-
exercise value to the resting value with a kinetic constant k.

`
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IV. Pathological changes assessed with 31P MRS

Given its ability to follow high-energy phosphate compounds and pH changes during transitions from rest
to exercise and exercise to rest, 31P MRS has a clear potential for delineating the metabolic abnormalities of a
particular myopathy thereby providing unique diagnostic indices. Skeletal muscle makes up about 40% of
body mass. Its metabolism largely influences whole-body homeostasis and disorders in other organ systems
should have an impact on muscle energetics. 31P MRS have provided key information for primary metabolic
disorders affecting muscle energy production (table1) but also for secondary problems of muscle metabolism
associated with common conditions such as heart failure, renal failure and thyroid disease.

As illustrated by the results in table 1, the specificity of MRS data does not reside in any single measurement
but in the pattern of abnormalities that distinguish particular types of primary or secondary muscle diseases.
For instance, the PCr recovery rate measured after exercise is slow in a large variety of disorders indicating
that in all of them oxidative ATP production is impaired (given that, as illustrated in paragraph III.D, PCr
kinetics throughout the recovery period is exclusively oxidative). However, with 31P MRS data one could go
further than that and determine the causative factors of this impaired aerobic energy production. The lack of
acidosis in Mc Ardle disease [30] indicates that impaired glycogenolysis and then lack of substrate is the
causative factor of impaired oxidative ATP production. On the contrary, in mitochondrial myopathy, the
combined analysis of PCr and pH time-dependent changes point towards a mitochondrial deficiency as
accounting for the impaired muscle energetics [32,55,69]. A final example of the specificity of MR results is
related to the impaired aerobic energy production in idiopathic inflammatory myopathy [70]. In that
particular case, the reduced rate of PCr recovery is related to an abnormal rate of pH recovery illustrating
that impaired blood flow might be responsible for the abnormal aerobic production as a result of the muscle
inflammatory process [70].

Deficits in ATP production caused directly by gene defects in skeletal muscle or indirectly by hormonal
changes, virus infection, inflammatory process, renal failure, ischemic disease, respiratory disease..... could
alter the normal MRS pattern thereby providing one or more diagnostic indices. However one should be
cautious with the interpretation of the results. For instance, two brothers with genetic defects of MELAS
showed similar reduction in maximum aerobic capacity while one was with 85% mutated DNA and the
other with only 4% mutated DNA [71]. This result could be interpreted as a discrepancy between in vivo and
in vitro measurements or as indicative of the absence of a clear threshold for the A3243G mutation in skeletal
muscle. These results have important implications for the understanding of the phenotypic expression of mt
DNA disease.

An additional step into the understanding of 31P MR metabolic indices resides in the quantitative analysis
initially developed by Kemp et al. [72]. With this type of analysis, one can further distinguish between
reduced muscle mass and/or reduced muscle efficiency and reduced oxidative capacity as accounting
factors of abnormal exercise-induced metabolic changes. Indeed, for a given muscle mass and a given
mechanical power output, the initial rate of ATP synthesis is by definition inversely proportional to
metabolic efficiency [73]. As illustrated in previous paragraphs, both aerobic and non oxidative
contributions to energy production can be calculated from the analysis of PCr, Pi, Pme and pH dynamics.
These changes depend on mechanical work, muscle mass and metabolic efficiency (the latter two variables
are combined as effective muscle mass) [33]. Generally speaking, greater PCr and pH changes should be
recorded if the ratio of work to effective muscle mass is increased or if aerobic ATP synthesis is decreased.
Such a comparison has been performed in a study of dialyzed uremic patients [33]. Raw data recorded in
this group of subject illustrated a larger PCr consumption while exercise duration and the corresponding
power output were reduced. pH time-dependent changes were normal and the analysis of the recovery
period disclosed a 50% reduction of the maximum aerobic capacity. From the initial increase in the PCr
consumption rate, one can infer a reduced effective muscle mass. Given that muscle mass (measured
separately) was similar in both groups of subjects, reduced metabolic efficiency can be suspected as
accounting for the greater exercise-induced metabolic changes. In addition, considering that both oxidative
and glycolytic contributions to energy production were increased in absolute terms but normal when energy
cost was taken into account, it can be proposed that reduced muscle efficiency rather than impaired aerobic
ATP production likely accounts for the greater PCr changes in exercise [33].
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Table 1 : Pathological changes measured using 31P MRS (rest-exercise-recovery protocol)

Pathological
situation

Rest ATP
depletion

PCr
depletion

Intracellular
acidosis

Rate of PCr
recovery

Ref

Mitochondrial
Myopathy

Reduced PCr/Pi No Larger Limited Slow together
with faster rate
of pH recovery

[32,55,69]

McArdle disease Increased
PCr/ATP

No Larger Limited Slow [30,80]

PFK deficiency Increased
PCr/ATP

Yes Larger Limited Slow [81,82]

Dystrophy
(Duchenne and
Becker)

Increased pH and
PDE

no Larger Normal Normal [83,84]

Myotonic
dystrophy

Decreased
phosphorylation
potential

No Larger Limited slow [85,86]

sIBM Increased pH
Increased Pi/ATP

Normal Normal Normal Normal [87,88]

Malignant
Hyperthermia

Increased PDE No Larger Excessive Normal [89,90]

IIM (Poly and
dermatomyositis)

Low PCr/ATP
and Pi/ATP

No larger Normal Slow together
with rate of pH
recovery

[70,91]

Renal failure Increased Pi/ATP No larger Normal Slow [33,92]
Chronic
respiratory
failure

No Larger Excessive Slow [93-95]

Congestive Heart
failure

No larger Excessive Slow [96,97]

Peripheral
vascular disease

No Larger Excessive Slow together
with rate of pH
recovery

[13,98,99]

Thyroid disease
(Hypo)

No Larger Smaller Normal
together with
slow rate of
pH recovery

[100]

Thyroid disease
(Hyper)

Excessive Normal [101]

Essential
hypertension

Smaller Normal
together with
faster rate of
pH recovery

[102]

V. Future investigations

Employing non-MR based techniques simultaneously with MRS can aid in data interpretation and will
certainly broaden the scope of muscle investigation. Near infrared spectroscopy (NIRS) provides data on
state of tissue oxygenation but reliability has still to be proven mainly on the basis of comparative and/or
combined analyses using MRS and NIRS [74]. Electromyography is another technique of interest which can
be used to study correlation between metabolic and electrical changes and provide interesting features
regarding muscle fatigue [75]. Combined with MRS, MR imaging techniques can also help understanding
muscle energetics. For instance, MRS data showing altered metabolites concentrations need to be interpreted
with caution. Indeed, metabolites concentrations may be altered but the presence of fatty or fibrous
infiltration can introduce false-positive results in a sense that data might not represent concentrations in the
actual muscle fibers. Functional MRI can also be of interest for understanding muscle activation during
exercise. Based on T2 changes due to uptake or redistribution of fluid within the exercising muscle,
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functional MRI is considered as a semi-quantitative method of assessing muscle recruitment during exercise
[76].  For instance, in Mc Ardle’s disease, abnormal glycogenolysis is coupled to abnormal exercise-induced
T2 changes [77,78]. Similarly, subnormal exercise-induced T2 changes increase can be recorded in other
metabolic myopathies [79]. However, muscle functional MRI is still underutilized although its used is
certainly well suited in the context of muscle energetics and for documenting muscle activation pattern in
pathological conditions and in subjects with very highly trained to exercise.
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